Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, A = {1, 3, 5, 7, 9}, B = {2, 4, 6, 8, 10}, and C = {1, 2, 4, 5, 8, 9}. List the elements of each set.

Respuesta :

Answer:

[tex]C\ n\ C^c = \{ \}[/tex]

[tex](A\ n\ C)^c = \{2,3,4,6,7,8,10\}[/tex]

[tex]A\ u\ (B\ n\ C) = \{1, 2,3, 4,5, 7, 8,9\}[/tex]

Step-by-step explanation:

Required

Determine

[tex]C\ n\ C^c[/tex]

[tex](A\ n\ C)^c[/tex]

[tex]A\ u\ (B\ n\ C)[/tex]

Solving [tex]C\ n\ C^c[/tex]

[tex]C^c[/tex] implies that elements in U but not in C

Since

[tex]C = \{1, 2, 4, 5, 8, 9\}[/tex]

[tex]C^c = \{3, 6, 7, 10\}[/tex]

[tex]C\ n\ C^c = \{1, 2, 4, 5, 8, 9\}\ n\ \{3, 6, 7, 10\}[/tex]

[tex]C\ n\ C^c = \{ \}[/tex]

Because there's no intersection between both

Solving [tex](A\ n\ C)^c[/tex]

First, we need to determine A n C

[tex]A\ n\ C = \{1, 3, 5, 7, 9\}\ n\ \{1, 2, 4, 5, 8, 9\}[/tex]

[tex]A\ n\ C = \{1, 5, 9\}[/tex]

[tex](A\ n\ C)^c = (\{1, 5, 9\})^c[/tex]

[tex](A\ n\ C)^c = \{2,3,4,6,7,8,10\}[/tex]

Solving [tex]A\ u\ (B\ n\ C)[/tex]

First, we need to determine B n C

[tex]B\ n\ C = \{2, 4, 6, 8, 10\}\ n\ \{1, 2, 4, 5, 8, 9\}[/tex]

[tex]B\ n\ C = \{2, 4, 8\}[/tex]

So:

[tex]A\ u\ (B\ n\ C) = \{1, 3, 5, 7, 9\}\ u\ \{2,4,8\}[/tex]

[tex]A\ u\ (B\ n\ C) = \{1, 2,3, 4,5, 7, 8,9\}[/tex]