Respuesta :
Answer:
The answer is "[tex]\bold{\left[\begin{array}{cc}a&b\\c&d\end{array}\right] = \left[\begin{array}{cc}7&-2\\ -\frac{1}{2}&\frac{7}{2}\end{array}\right]}[/tex]".
Step-by-step explanation:
[tex]\bold{\left[\begin{array}{cc}1&2\\3&4\end{array}\right] \left[\begin{array}{cc}a&b\\c&d\end{array}\right] = \left[\begin{array}{cc}6&5\\ 19&8\end{array}\right]}[/tex]
Solve the L.H.S part:
[tex]\left[\begin{array}{cc}1&2\\3&4\end{array}\right] \left[\begin{array}{cc}a&b\\c&d\end{array}\right]\\\\\\\left[\begin{array}{cc}a+2c&b+2d\\3a+4c&3b+4d\end{array}\right][/tex]
After calculating the L.H.S part compare the value with R.H.S:
[tex]\left[\begin{array}{cc}a+2c&b+2d\\3a+4c&3b+4d\end{array}\right]= \left[\begin{array}{cc}6&5\\ 19&8\end{array}\right]} \\\\[/tex]
[tex]\to a+2c =6....(i)\\\\\to b+2d =5....(ii)\\\\\to 3a+4c =19....(iii)\\\\\to 3b+4d = 8 ....(iv)\\\\[/tex]
In equation (i) multiply by 3 and subtract by equation (iii):
[tex]\to 3a+6c=18\\\to 3a+4c=19\\\\\text{subtract}... \\\\\to 2c = -1\\\\\to c= - \frac{1}{2}[/tex]
put the value of c in equation (i):
[tex]\to a+ 2 (- \frac{1}{2})=6\\\\\to a- 2 \times \frac{1}{2}=6\\\\\to a- 1=6\\\\\to a =6 +1\\\\\to a = 7\\[/tex]
In equation (ii) multiply by 3 then subtract by equation (iv):
[tex]\to 3b+6d=15\\\to 3b+4d=8\\\\\text{subtract...}\\\\\to 2d = 7\\\\\to d= \frac{7}{2}\\[/tex]
put the value of d in equation (iv):
[tex]\to 3b+4 (\frac{7}{2})=8\\\\\to 3b+4 \times \frac{7}{2}=8\\\\\to 3b+14=8\\\\\to 3b =8-14\\\\\to 3b = -6\\\\\to b= \frac{-6}{3}\\\\\to b= -2[/tex]
The final answer is "[tex]\bold{\left[\begin{array}{cc}a&b\\c&d\end{array}\right] = \left[\begin{array}{cc}7&-2\\ -\frac{1}{2}&\frac{7}{2}\end{array}\right]}[/tex]".