Answer:
2 ft
Step-by-step explanation:
Given that Dimensions of rectangular plot are: 26 feet by 30 feet
Length is 26 ft
Width is 30 ft
Area of rectangle = Length [tex]\times[/tex] Width
So, area of given rectangular field is = 26 [tex]\times[/tex] 30 = 780 sq ft
Let the width of the walk = [tex]x[/tex] ft
Kindly refer to the attached image for the given scenario.
Dimensions of the plot with walk = (26+2[tex]x[/tex]) ft by (30+2[tex]x[/tex]) ft
So, area of plot without walk = 780 sq ft
Area of walk = Area with walk - Area of plot
Now, we are given that area of walk = 240 sq ft
So, we get:
240 = (26+2[tex]x[/tex]) [tex]\times[/tex] (30+2[tex]x[/tex]) - 840
[tex]\Rightarrow (26+2x)(30+2x)=780+240\\\Rightarrow 780+4x^2+112x=780+240\\\Rightarrow 4x^2+112x-240=0\\\Rightarrow x^2+28x-60=0\\\Rightarrow x^2+30x-2x-60=0\\\Rightarrow x(x+30)-2(x+30)=0\\\Rightarrow x = 2, -30\ ft[/tex]
[tex]x[/tex] can not be negative, so [tex]x = 2\ ft[/tex]
So, the width of the walk = 2 ft