A certain electromagnetic wave traveling in seawater was observed to have an amplitude of 98.02 (V/m) at a depth of 10 m, and an amplitude of 81.87 (V/m) at a depth of 100 m. What is the attenuation constant of seawater

Respuesta :

Answer:

The  value is   [tex]\alpha =  0.002 Np/m[/tex]

Explanation:

From the question we are told that

  The first amplitude of the wave is  [tex]E_{max}1 =  98.02 \  V/m[/tex]

  The first  depth  is  [tex]D_1 =  10 \  m[/tex]

   The second amplitude is  [tex]E_{max}2 =  81.87 \  (V/m)[/tex]

   The second depth is [tex]D_2 = 100 \ m[/tex]

Generally from the spatial wave equation we have

   [tex]v(x) =  Ae^{-\alpha d}cos(\beta x  + \phi_o)[/tex]

=>       [tex]\frac{v(x)}{v(x)} =\frac{  Ae^{-\alpha d}cos(\beta x  + \phi_o)}{ Ae^{-\alpha d}cos(\beta x  + \phi_o)}[/tex]

So considering the ratio of the equation for the  two depth

[tex]\frac{A}{A_S}  =  \frac{e^{-D_1 \alpha }}{e^{-D_2 \alpha }}[/tex]

=>   [tex]\frac{98.02}{81.87}  =  \frac{e^{-10 \alpha }}{e^{-100 \alpha }}[/tex]

=>   [tex]\alpha  =  \frac{0.18}{90}[/tex]

=>    [tex]\alpha =  0.002 Np/m[/tex]