Answer:
A
[tex]f(x+ h) = 6x + 6h -3[/tex]
B
[tex]f(x+ h) - f(x) = 6h[/tex]
C
[tex]\frac{f(x + h) - f(x)}{h} = 6[/tex]
Step-by-step explanation:
From the question the given equation is
[tex]f(x) = 6x -3[/tex]
Considering A
[tex]f(x+ h) = 6(x + h) -3[/tex]
=> [tex]f(x+ h) = 6x + 6h -3[/tex]
Considering B
[tex]f(x+ h) - f(x) = 6x +6h -3 - (6x-3)[/tex]
[tex]f(x+ h) - f(x) = 6h[/tex]
Considering C
[tex]\frac{f(x + h) - f(x)}{h} = \frac{6h}{h}[/tex]
[tex]\frac{f(x + h) - f(x)}{h} = 6[/tex]