Respuesta :

Answer:

[tex]b  =  (q,r , 5q-2\sqrt{26} )[/tex]

Step-by-step explanation:

From the question we are told that

The vector given is  

               [tex]a = (5,0,-1)[/tex]

  Also  [tex]comp_a b =  2[/tex]

Generally

       [tex]comp_a b  =  \frac{a \cdot b}{|a|}[/tex]

Here  [tex]|a|[/tex] is the magnitude of  a which is mathematically represented as

      [tex]|a| =  \sqrt{5^2  + 0^2  +(-1)^2 }[/tex]

=>     [tex]|a| =  \sqrt{26}[/tex]

b is vector which we will assume to have the following parameters

     [tex]b  =  (q , r , x)[/tex]

So

        [tex]comp_a b =  \frac{(5,0,-1) \cdot (q,r,x)}{\sqrt{26} } =  2[/tex]

=>     [tex]\frac{5q + 0 -x}{\sqrt{26} } = 2[/tex]

=>     [tex]x =  5q-2\sqrt{26}[/tex]

Hence the vector be can be mathematically represented as

      [tex]b  =  (q,r , 5q-2\sqrt{26} )[/tex]

This means that the vector b is more than one value  since it is made up of variable

This means that if

   [tex]q = 1\\r=1\\x =1[/tex]

Then

    [tex]b  =  (1,1,5-2\sqrt{26} )[/tex]

         

A quantity has magnitude but not position, that's why in this the vector [tex]b =(0,0, -2\sqrt{26}).[/tex]

Vector:

If[tex]a =(5,0,-1)[/tex] Our goal is to determine a vector b that will allow comp to work properly [tex]_{a}b = 2.[/tex]

Allow the vector to flow naturally  [tex]b =(x, y,z)[/tex]

Recalling

comp[tex]_{a}b =\frac{a.b}{|a|}[/tex]

Therefore,

comp [tex]_{a}b= 2 \\\\[/tex]

[tex]\to \frac{a.b}{|a|}= 2\\\\[/tex]

[tex]\to \frac{(5,0,-1)\cdot (x,y,z)}{ |(5,0,-1)|} =2\\\\\to \frac{5x+0-z}{5^2+0+(-1)^2}=2\\\\ \to \frac{5x-z}{\sqrt{26}}= 2 \\\\\to 5x-z = 2\sqrt{26}\\\\ \to z=5x-2\sqrt{26}\\\\[/tex]

As a result, the vector b can be expressed as,

[tex]\to b =(x,y,z) =(x, y, 5x-2\sqrt{26}) \\\\[/tex]

As a result, this aforementioned form can be found in an endless number of vectors.

One of them is [tex]b =(0,0, -2\sqrt{26}).[/tex]

Find out more about the vector here:

brainly.com/question/13322477

Ver imagen codiepienagoya