Part A: Plot the points A(-8,7) and B(6,-9). Mark the halfway point on AB and label it point M. What are the coordinates of M? Part B: Plot point C(2,7). If M is the midpoint of CD, what are the coordinates of D?
please help me

Respuesta :

Answer:

a. [tex]M(x,y) = (-1,-1)[/tex]

b. [tex]D(-4,-9)[/tex]

Step-by-step explanation:

Given

A(-8,7) and B(6,-9).

Solving (a):

Determine the Midpoint M;

This is calculated as follows;

[tex]M(x,y) = (\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]

Where

[tex](x_1,y_1) = (-8,7)[/tex]

[tex](x_2,y_2) = (6,-9)[/tex]

Substitute these values in the formula

[tex]M(x,y) = (\frac{-8+6}{2},\frac{7-9}{2})[/tex]

[tex]M(x,y) = (\frac{-2}{2},\frac{-2}{2})[/tex]

[tex]M(x,y) = (-1,-1)[/tex]

Hence; the midpoint is (-1,-1)

Solving (a):

Here, we have

C = (2,7)

M; Midpoint = (-1,-1)

Required: Determine D

This is calculated as follows;

[tex]M(x,y) = (\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]

Where

[tex](x_1,y_1) = (2,7)[/tex]

[tex](x,y) = (-1,-1)[/tex]

Substitute these values in the formula

[tex](-1,-1) = (\frac{2+x_2}{2},\frac{7+y_2}{2})[/tex]

Solving for x2

[tex]-1 = \frac{2 + x_2}{2}[/tex]

Multiply both sides by 2

[tex]-2 = 2 + x_2[/tex]

Subtract 2 from both sides

[tex]x_2 = -2 - 2[/tex]

[tex]x_2 = -4[/tex]

Solving for y2

[tex]-1 = \frac{7 + y_2}{2}[/tex]

Multiply both sides by 2

[tex]-2 = 7 + y_2[/tex]

Subtract 7 from both sides

[tex]y_2 = -2 - 7[/tex]

[tex]y_2 = -9[/tex]

Hence, the coordinates of D is

[tex]D(-4,-9)[/tex]