Respuesta :

Answer:

x = 3

[tex] LM = 26 [/tex]

Step-by-step explanation:

Given:

[tex] LM = 8x + 2 [/tex]

[tex] MN = 10x - 4 [/tex]

Required:

Value of x and length of segment LM

SOLUTION:

Since M is the midpoint of line segment LN, it implies that:

[tex] LM = MN [/tex]

[tex] 8x + 2 = 10x - 4 [/tex] (substitution)

Combine like terms

[tex] 2 + 4 = 10x - 8x [/tex]

[tex] 6 = 2x [/tex]

Divide both sides by 2

[tex] \frac{6}{2} = \frac{2x}{2} [/tex]

[tex] 3 = x [/tex]

[tex] x = 3 [/tex]

[tex] LM = 8x + 2 [/tex]

Plug in the value of x

[tex] LM = 8(3) + 2 [/tex]

[tex] LM = 24 + 2 [/tex]

[tex] LM = 26 [/tex]