At a particular sea level location at a particular time the atmospheric pressure is 14.8 lbs/in^2 and the temperature is 80 degrees F. Estimate the temp, pressure , and air density at an altitude of 8,000ft? 18,000 ft? Note: You must modify the standard atmosphere model using the given values for sea level air pressure and temperature

Respuesta :

Answer:

(a) At 8,000 ft :

The air  temperature is 30.52  °F

The air pressure is 1574 lbs/ft²

The air density is 1.869 x 10⁻³ slug/ft³

(b)  At 18,000 ft :

The air temperature is -5.08  °F

The air pressure is 1059.2 lbs/ft²

The air density is 1.356 x 10⁻³ slug/ft³

Step-by-step explanation:

Given;

pressure at sea level, P₀ = 14.8 PSI

temperature, T' = 80 °F

At 8,000 ft (m) altitude

for altitude h, less than 36,152 ft, the following model is used to modify temperature and pressure;

T = 59 - 0.00356h

T = 59 - 0.00356(8,000)

T = 30.52  °F

The pressure is calculated as;

[tex]P = 2116[\frac{T+459.7}{518.6} ]^{5.256}\\\\P = 2116[\frac{30.52+459.7}{518.6} ]^{5.256}\\\\P = 1574.2 \ lbs/ft^2[/tex]

The density is given by;

[tex]\rho = \frac{P}{1718*(T+459.7)}\\\\\rho = \frac{1574.2}{1718*(30.52+459.7)}\\\\\rho = 1.869*10^{-3} \ slug/ft^3[/tex]

For 18,000 ft

T = 59 - 0.00356h

T = 59 - 0.00356(18,000)

T = -5.08 °F

The pressure is calculated as;

[tex]P = 2116[\frac{T+459.7}{518.6} ]^{5.256}\\\\P = 2116[\frac{-5.08+459.7}{518.6} ]^{5.256}\\\\P = 1059.2 \ lbs/ft^2[/tex]

The density is given by;

[tex]\rho = \frac{P}{1718(T+459.7)} \\\\\rho = \frac{1059.2}{1718(-5.08+459.7)}\\\\ \rho = 1.356*10^{-3} \ slug/ft^3[/tex]