Respuesta :
Answer: Q'(-4,-4)
Step-by-step explanation:
Every line of equation x=a is parallel to y-axis.
Reflection across y axis rule :
(x,y) → (-x, y) i.e. y -coordinate remains same.
Reflection across x=a rule :
(x,y) → (a-x, y)
To determine the coordinates of Q(6,-4) after a reflection in the line x=2.
So, Q(6,-4) → Q' (2-6, -4)= Q'(-4,-4)
Hence, the required coordinate =Q'(-4,-4)
When a point is reflected, it must be reflected across a line
The coordinate of Q after the reflection is: [tex]\mathbf{Q' = (- 2, -4)}[/tex]
So, Q(6,-4) → Q' (2-6, -4)= Q'(-4,-4)
The point is given as:
[tex]\mathbf{Q = (6,-4)}[/tex]
The line of reflection is given as:
[tex]\mathbf{x = 2}[/tex]
The rule of reflection for [tex]\mathbf{x = a}[/tex] is:
[tex]\mathbf{(x,y) \to (2a - x, y)}[/tex]
For [tex]\mathbf{a = 2}[/tex], we have:
[tex]\mathbf{(x,y) \to (2(2) - x, y)}[/tex]
[tex]\mathbf{(x,y) \to (4 - x, y)}[/tex]
So, we have:
[tex]\mathbf{Q' = (4 - 6, -4)}[/tex]
[tex]\mathbf{Q' = (- 2, -4)}[/tex]
Hence, the coordinate of Q after the reflection is: [tex]\mathbf{Q' = (- 2, -4)}[/tex]
Read more about reflections at:
https://brainly.com/question/938117