Respuesta :

Answer:

[tex]\boxed {d = \sqrt{58}}[/tex]

Step-by-step explanation:

Use the Distance Formula to help determine the distance between the two given points:

[tex]d = \sqrt{(x_{2} - x_{1}) ^{2} + (y_{2} - y_{1})^{2}}[/tex]

First point: [tex](x_{1}, y_{1})[/tex]

Second point: [tex](x_{2}, y_{2})[/tex]

-Apply the given points onto the formula:

First point: [tex](-5, 1)[/tex]

Second point: [tex](2, 4)[/tex]

[tex]d = \sqrt{(2 + 5) ^{2} + (4 - 1)^{2}}[/tex]

-Solve for the distance:

[tex]d = \sqrt{(2 + 5) ^{2} + (4 - 1)^{2}}[/tex]

[tex]d = \sqrt{(7) ^{2} + (3)^{2}}[/tex]

[tex]d = \sqrt{49 + 9}[/tex]

[tex]\boxed {d = \sqrt{58}}[/tex] (since the number can't be square rooted, it will stay written the same)

Therefore, the distance is [tex]\sqrt{58}[/tex].