Simplify this number: [tex]\frac{3}{\sqrt[3]{3} }[/tex]
Put all the rules like exponent, radical and other nessecary steps.

Respuesta :

Answer: 3 [tex]\frac{2}{3}[/tex]

Follow the radical rule:

[tex]\sqrt[n]{a}[/tex] = [tex]a \frac{1}{n}[/tex]

We get the number [tex]\frac{3}{3\frac{1}{3} }[/tex]

Follow the exponent rule:

[tex]\frac{x^{a} }{x^{b} }[/tex] = [tex]x^{a - b}[/tex]

We get the number [tex]3^{1} - \frac{1}{3}[/tex].

Now, subtract.

[tex]3 - \frac{1}{3}[/tex] [tex]= \frac{2}{3}[/tex]

The answer is 3 2/3

Answer:

[tex] \boxed{ \frac{3}{\sqrt[3]{3}} = \boxed{ \sqrt[3]{9}}=2.080083823 }[/tex]

Step-by-step explanation:

[tex]if \: this \: is \: your \: question \to \: \frac{3}{\sqrt[3]{3} } \\then : it \: is \: the \: same \: as \to \: 3 \div \sqrt[3]{3} \\but \: 3 = {(3)}^{1} \\ and \to \\ \sqrt[3]{3} = {(3)}^{ \frac{1}{3} } : hence \to \\ {(3)}^{1} \div {(3)}^{ \frac{1}{3} } = {(3)}^{1 - \frac{1}{3} } \to \\ 3 {}^{ \frac{2}{3} } = \sqrt[3]{3} {}^{2} = \sqrt[3]{9} .[/tex]

♨Rage♨