Answer:
[tex]d=4\sqrt{5}[/tex]
Step-by-step explanation:
Write down both endpoint coordinate points:
[tex](-5,-3)(-1,5)[/tex]
Use the distance formula:
[tex]d=\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2} \\\\(x_{1},y_{1})(x_{2},y_{2})[/tex]
Insert values:
[tex]d=\sqrt{(-1-(-5))^2+(5-(-3))^2} \\\\d=\sqrt{(-1+5)^2+(5+3)^2}[/tex]
Simplify parentheses:
[tex]d=\sqrt{(4)^2+(8)^2}[/tex]
Simplify exponents:
[tex]d=\sqrt{16+64}[/tex]
Add:
[tex]d=\sqrt{80}[/tex]
Find the square root. Find multiples of 80 that are perfect squares:
[tex]16*5=80\\\\\sqrt{16*5}\\\\\sqrt{16}*\sqrt{5} \\\\[/tex]
[tex]d=4\sqrt{5}\\\\d=8.94427190...[/tex]
:Done