Answer:
[tex]A = 0.04[/tex]
Step-by-step explanation:
Given
[tex]h(d) = -0.0032d^2 + d + 3[/tex]
Required
Determine the average rate of change for d = 100 to 200
Average rate of change (A) is calculated as follows:
[tex]A = \frac{h(b) - h(a)}{b - a}[/tex]
In this case:
[tex]b = 200[/tex] and [tex]a = 100[/tex]
So: [tex]A = \frac{h(b) - h(a)}{b - a}[/tex] becomes
[tex]A = \frac{h(200) - h(100}{200 - 100}[/tex]
[tex]A = \frac{h(200) - h(100)}{100}[/tex]
Solving h(200)
[tex]h(d) = -0.0032d^2 + d + 3[/tex]
[tex]h(200) = -0.0032*200^2 + 200 + 3[/tex]
[tex]h(200) = 75[/tex]
Solving h(100)
[tex]h(d) = -0.0032d^2 + d + 3[/tex]
[tex]h(100) = -0.0032*100^2 + 100 + 3[/tex]
[tex]h(100) = 71[/tex]
So: [tex]A = \frac{h(200) - h(100)}{100}[/tex] becomes
[tex]A = \frac{75 - 71}{100}[/tex]
[tex]A = \frac{4}{100}[/tex]
[tex]A = 0.04[/tex]
Hence, the average rate of change is 0.04