Can you help me

(1). If f(x)=|x−5|+3, find f(2).


11


6


4


0

(2). If f(x)=8−3|x+2|, find f(−6).


−16


−4


4


20

(3). What is the turning point of the graph of f(x)=|x−2|+3?


(2, −3)

(2, 3)

(−3, 2)

(3, 2)

Respuesta :

(1).

f(x) = |x − 5| + 3

f(2) = |2 − 5| + 3 = |−3| + 3 = 3 + 3 = 6

(2).

f(x) = 8 − 3|x + 2|

f(−6) = 8 − 3|−6 + 2| = 8 − 3|−4| = 8 − 3·4 = 8 −  12 = − 4

(3).

For f(x) = |x − h| + k the turning point is (h, k), so:

f(x) = |x − 2| + 3   ⇒  the turning point is: (2, 3)

Answer:

f (x) = (2x + 3)(6x5 − 2x8)+(x2 + 3x)(30x4 − 16x7). f (1) = 5 · 4+4 ... For f(x) = 3. √ x5 + 6. 5√ x3 , find f (x).  f(x) = x. 5. 3 + 6x−3. 5 , we have f (x) = 5. 3 x. 2. 3 +. 6(−3. 5.

Step-by-step explanation: