Respuesta :

Answer:

D. 17.61 square units

Step-by-step explanation:

To find the area of the ∆ABC, we can apply the formula below:

Area of ∆ABC = ½×a×c×sin(B)

a = 10

c = ??

B = 22°

Let's find c using Sine Rule:

Thus:

[tex] \frac{a}{sin(A)} = \frac{c}{sin(C)} [/tex]

Where,

a = 10

c = ??

A = 180 - (22 + 70) = 88°

C = 70°

Plug in the values

[tex] \frac{10}{sin(88)} = \frac{c}{sin(70)} [/tex]

Multiply both sides by sin(70)

[tex] \frac{10}{sin(88)} \times sin(70) = \frac{c}{sin(70)} \times sin(70) [/tex]

[tex] \frac{10 \times sin(70)}{sin(88)} = c [/tex]

[tex] 9.4 = c [/tex] (nearest tenth)

✔️Area of ∆ABC = ½×a×c×sin(B)

Plug in the values

Area of ∆ABC = ½ × 10 × 9.4 × sin(22)

Area = 17.61 square units (nearest tenth)