Respuesta :

Answer:

13). y = x² + 6x + 8

14). y = 2x² + 8x - 12  

Step-by-step explanation:

13). Vertex form of a parabola is given by,

     y = a(x - h)² + k

     Here (h, k) is the vertex of the parabola.

     Equation of a parabola with vertex (-3, -1) will be,

     y = a(x + 3)² - 1

     Since, y-intercept of the parabola is y = 8

     In other words, parabola is passing through (0, 8)

     8 = a(0 + 3)² - 1

     8 = 9a - 1

     9a = 9

     a = 1

    Therefore, equation of the parabola will be,

    y = (x + 3)² - 1

    y = x² + 6x + 9 - 1

    y = x² + 6x + 8

14). Equation of a parabola with vertex (-2, -20)

     y = a(x + 2)² - 20

     Since, y-intercept of the parabola is (0, -12),

    -12 = a(0 + 2)² - 20

    -12 + 20 = 4a

     4a = 8

     a = 2

    Therefore, equation of the parabola will be,

     y = 2(x + 2)² - 20

     y = 2(x² + 4x + 4) - 20

     y = 2x² + 8x + 8 - 20

     y = 2x² + 8x - 12  

Otras preguntas