[tex]\frac{d}{dx} \int t^2+1 \ dt[/tex]
There is a 2x on the bottom and x^2 on top of the integral symbol
Please help me my teacher did not teach us this:(

Respuesta :

Answer:

[tex]\displaystyle{\frac{d}{dx} \int \limits_{2x}^{x^2} t^2+1 \ \text{dt} \ = \ 2x^5-8x^2+2x-2[/tex]

Step-by-step explanation:

[tex]\displaystyle{\frac{d}{dx} \int \limits_{2x}^{x^2} t^2+1 \ \text{dt} = \ ?[/tex]

We can use Part I of the Fundamental Theorem of Calculus:

  • [tex]\displaystyle\frac{d}{dx} \int\limits^x_a \text{f(t) dt = f(x)}[/tex]

Since we have two functions as the limits of integration, we can use one of the properties of integrals; the additivity rule.

The Additivity Rule for Integrals states that:

  • [tex]\displaystyle\int\limits^b_a \text{f(t) dt} + \int\limits^c_b \text{f(t) dt} = \int\limits^c_a \text{f(t) dt}[/tex]

We can use this backward and break the integral into two parts. We can use any number for "b", but I will use 0 since it tends to make calculations simpler.

  • [tex]\displaystyle \frac{d}{dx} \int\limits^0_{2x} t^2+1 \text{ dt} \ + \ \frac{d}{dx} \int\limits^{x^2}_0 t^2+1 \text{ dt}[/tex]

We want the variable to be the top limit of integration, so we can use the Order of Integration Rule to rewrite this.

The Order of Integration Rule states that:

  • [tex]\displaystyle\int\limits^b_a \text{f(t) dt}\ = -\int\limits^a_b \text{f(t) dt}[/tex]

We can use this rule to our advantage by flipping the limits of integration on the first integral and adding a negative sign.

  • [tex]\displaystyle \frac{d}{dx} -\int\limits^{2x}_{0} t^2+1 \text{ dt} \ + \ \frac{d}{dx} \int\limits^{x^2}_0 t^2+1 \text{ dt}[/tex]  

Now we can take the derivative of the integrals by using the Fundamental Theorem of Calculus.

When taking the derivative of an integral, we can follow this notation:

  • [tex]\displaystyle \frac{d}{dx} \int\limits^u_a \text{f(t) dt} = \text{f(u)} \cdot \frac{d}{dx} [u][/tex]
  • where u represents any function other than a variable

For the first term, replace [tex]\text{t}[/tex] with [tex]2x[/tex], and apply the chain rule to the function. Do the same for the second term; replace

  • [tex]\displaystyle-[(2x)^2+1] \cdot (2) \ + \ [(x^2)^2 + 1] \cdot (2x)[/tex]  

Simplify the expression by distributing [tex]2[/tex] and [tex]2x[/tex] inside their respective parentheses.

  • [tex][-(8x^2 +2)] + (2x^5 + 2x)[/tex]
  • [tex]-8x^2 -2 + 2x^5 + 2x[/tex]

Rearrange the terms to be in order from the highest degree to the lowest degree.

  • [tex]\displaystyle2x^5-8x^2+2x-2[/tex]

This is the derivative of the given integral, and thus the solution to the problem.