Respuesta :

Answer:

1. 58 = 5x-2, 60 = 5x, x = 12

2. 134 = 16x+22, 112 = 16x, x = 7

3. 125 = 7x-1, 126 = 7x, x = 18

4. 133+9x+2 = 180, 9x=45, x=6

5. 8x-77 = 3x+38, 5x = 115, x=23

6. 11x-47 = 6x-2, 5x = 45, x=9

7. 13x-21 = 5x+75, 8x = 96, x=12

8. 5x+3+9x-33 = 180, 14x = 210, x=15

9. 8x-31 = 6x+3, 2x = 34, x=17

5y+35+6(17)+3 = 180, 5y = 40, y = 8

10. 29x-3+15x+7 = 180, 44x = 176, x=4

13y-17+15(4)+7 = 180, 13y = 130, y=10

1. x = 12

2. x = 7

3. x = 18

4. x = 5

5. x = 23

6. x = 9

7. x = 12

8. x = 15

9. x = 17; y = 8

10. x = 4; y = 10

To find the value of each missing variable(s), we would need to apply our knowledge of algebra. However, recall the following rules of angles in parallel lines:

  • corresponding angles are congruent (i.e. equal to each other)
  • vertically opposite angles are congruent
  • alternate angles are congruent
  • same-side interior angles are supplementary (i.e. sum up to give 180°
  • alternate exterior angles are congruent.

Let's solve the given problems as shown below given that line l is parallel to line m:

1. [tex]58 = (5x - 2)[/tex] (corresponding angles)

solve for x

[tex]58 = 5x - 2\\58 + 2 = 5x - 2 +2[/tex] (addition property of equality)

[tex]60 = 5x \\\frac{60}{5} = \frac{5x}{5}[/tex](division property of equality)

[tex]12 = x\\x = 12[/tex]

2. [tex]134 = 16x+22[/tex] (alternate exterior angles)

[tex]\\134 - 22 = 16x +22-22[/tex] (subtraction property of equality)

[tex]134 - 22 = 16x +22-22\\112 = 16x\\\frac{112}{16} = \frac{16x}{16}[/tex](division property of equality)

[tex]7 = x\\x = 7[/tex]

3. [tex]7x - 1 = 125[/tex] (alternate angles)

[tex]7x - 1 + 1 = 125 + 1\\7x = 126\\\frac{7x}{7} = \frac{126}{7} \\x = 18[/tex]

4. [tex](9x+2) + 133 = 180[/tex] (same-side interior angles)

[tex]9x+2 + 133 = 180\\9x + 135 = 180\\9x + 135 - 135 = 180 - 135\\9x = 45\\\frac{9x}{9} = \frac{45}{9} \\x = 5[/tex]

5. [tex]3x+38 = 8x-77[/tex] (alternate exterior angles)

[tex]77 + 38 = 8x - 3x\\115 = 5x\\\frac{115}{5} = \frac{5x}{5} \\23 = x\\x = 23[/tex]

6. [tex]6x-2 = 11x-47[/tex] (corresponding angles)

[tex]6x-2 = 11x-47\\47 - 2 = 11x - 6x\\45 = 5x\\x = 9[/tex]

7. [tex]5x+75 = 13x - 21[/tex] (alternate angles)

[tex]5x+75 = 13x - 21\\21 + 75 = 13x - 5x\\96 = 8x\\12 = x\\x = 12[/tex]

8. [tex](5x+3)+(9x-33)= 180[/tex] (same-side interior angles)

[tex]5x+3+9x-33= 180\\14x - 30 = 180\\14x - 30 + 30 = 180 + 30\\14x = 210\\x = 15[/tex]

9. [tex]8x-31 = 6x+3[/tex] (alternate angles)

[tex]8x - 6x = 31 + 3\\2x = 34\\x = 17[/tex]

Solve for y

[tex](5y + 35) + (6x + 3) = 180[/tex] (same-side interior angles)

[tex]5y + 35 + 6x + 3 = 180\\[/tex]

Plug in the value of x

[tex]5y + 35 + 6(17) + 3 = 180\\5y + 35 + 102 + 3 = 180\\5y + 140 = 180\\5y = 180 - 140\\5y = 40\\y = 8[/tex]

10. [tex](29x-3)+(15x+7) = 180[/tex](supplementary angles)

Solve for y

[tex]13y - 17 = 29x - 3[/tex] (alternate exterior angles)

Plug in the value of x

[tex]13y - 17 = 29(4) - 3\\13y - 17 = 116 - 3\\13y - 17 = 113\\13y = 113 + 17\\13y = 130\\y = 10\\[/tex]

Learn more about parallel lines here:

https://brainly.com/question/16227989