Answer:
Air speed in the wind-tunnel [tex]v_{2}[/tex] = 27.5 m/s
Explanation:
Given data :
Manometer reading ; p1 - p2 = 45 mm of water
Pressure at section ( I ) p1 = 100 kPa ( abs )
temperature ( T1 ) = 25°C
Pw ( density of water ) = 999 kg/m3
g = 9.81 m/s^2
next we apply Bernoulli equation at section 1 and section 2
p1 - p2 = [tex]\frac{PairV^{2} _{2} }{2}[/tex] ---------- ( 1 )
considering ideal gas equation
Pair ( density of air ) = [tex]\frac{P}{RT}[/tex] ------------------- ( 2 )
R ( constant ) = 287 NM/kg.k
T = 25 + 273.15 = 298.15 k
P1 = 100 kN/m^2 = 100 * 10^3 or N/m^2
substitute values into equation ( 2 )
= 100 * 10^3 / (287 * 298.15)
= 1.17 kg/m^3
Also note ; p1 - p2 = PwgΔh ------- ( 3 )
finally calculate the Air speed in the wind-tunnel test section by equating equation ( 1 ) and ( 3 )
[tex]\frac{PairV^{2} _{2} }{2}[/tex] = PwgΔh
[tex]V^{2} _{2}[/tex] = [tex]\frac{2*999* 9.81* 0.045}{1.17}[/tex] = 753.86
[tex]v_{2}[/tex] = 27.5 m/s