Michelin Tire Company wishes to set a minimum mileage guarantee on its new MX100 tire. Tests reveal the mean mileage is 67,900 with a standard deviation of 2,050 miles and that the distribution of miles follows the normal probability distribution. Michelin wants to set the minimum guaranteed mileage so that no more than 4 percent of the tires will have to be replaced. What minimum guaranteed mileage should Michelin announce

Respuesta :

Answer:

The minimum guaranteed mileage is  [tex]x = 71489.55[/tex]

Step-by-step explanation:

From the question we are told that

   The mean is  [tex]\mu = 67900[/tex]

     The standard deviation is  [tex]\sigma = 2050[/tex]

Generally for the probability to be 4% the minimum guaranteed mileage is evaluated as

    [tex]P( X \ge x ) =1- P( \frac{X - \mu }{\sigma } < \frac{ x - 67900 }{ 2050} ) = 0.04[/tex]

[tex]\frac{X -\mu}{\sigma }  =  Z (The  \ standardized \  value\  of  \ X )[/tex]

     [tex]P( X \ge x ) =1- P( Z<z) = 0.04[/tex]

=>  [tex]P( X \ge x ) = P( Z<z) = 0.96[/tex]

=>    [tex]z = \frac{ x - 67900 }{ 2050}[/tex]

From the z table, the critical value corresponding to 0.96 to the left of the curve is  

         [tex]z = 1.751[/tex]

So

        [tex]1.751 = \frac{ x - 67900 }{ 2050}[/tex]

=>     [tex]x = 71489.55[/tex]