Respuesta :
Answer:
- It takes A 30 days to finish the work alone
- It takes B 20 days to finish the work alone
- It takes C 60 days to finish the work alone
- Working together, it takes them 10 days to finish the work
Step-by-step explanation:
Given;
[tex]\frac{1}{A} + \frac{1}{B} =\frac{1}{12} \\\\\frac{1}{B} + \frac{1}{C} = \frac{1}{15}\\\\\frac{1}{A} + \frac{1}{C} = \frac{1}{20}\\\\[/tex]
From given equations above;
[tex]\frac{1}{A} +\frac{1}{B} = \frac{1}{12}\\\\But, \frac{1}{B} =\frac{1}{15} -\frac{1}{C}\\\\ \frac{1}{A} +\frac{1}{15} -\frac{1}{C}= \frac{1}{12}\\\\Also, \frac{1}{C} = \frac{1}{20} -\frac{1}{A} \\\\ \frac{1}{A} +\frac{1}{15} -(\frac{1}{20} -\frac{1}{A})= \frac{1}{12}\\\\ \frac{1}{A} +\frac{1}{15} -\frac{1}{20} +\frac{1}{A}= \frac{1}{12}\\\\ \frac{1}{A} +\frac{1}{A} = \frac{1}{12} +\frac{1}{20}-\frac{1}{15}\\\\\frac{2}{A} = \frac{300+ 180-240}{3600} \\\\\frac{2}{A} =\frac{240}{3600}\\\\[/tex]
[tex]\frac{2}{A} = \frac{1}{15} \\\\A = 30 \ days[/tex]
solve for B;
[tex]\frac{1}{A} + \frac{1}{B} = \frac{1}{12}\\\\ \frac{1}{B} = \frac{1}{12} - \frac{1}{A} \\\\ \frac{1}{B} = \frac{1}{12} - \frac{1}{30}\\\\ \frac{1}{B} =\frac{5-2}{60} \\\\ \frac{1}{B} =\frac{3}{60}\\\\B = 20 \ days[/tex]
Solve for C;
[tex]\frac{1}{C} =\frac{1}{20} -\frac{1}{A}\\\\ \frac{1}{C} = \frac{1}{20} -\frac{1}{30}\\\\ \frac{1}{C} =\frac{3-2}{60} \\\\ \frac{1}{C} =\frac{1}{60}\\\\C = 60 \ days[/tex]
When they work together;
[tex]\frac{1}{A} +\frac{1}{B} +\frac{1}{C} =\frac{1}{y} \\\\\frac{1}{30} +\frac{1}{20} +\frac{1}{60} = \frac{1}{y}\\\\\frac{2+ 3+ 1}{60} =\frac{1}{y}\\\\\frac{6}{60} =\frac{1}{y}\\\\y = 10\ days[/tex]