Respuesta :

Answer:

a = 2

b = - 6

c = 0

Step-by-step explanation:

Since, -3,0 and 2 are the zeroes of the polynomial

[tex] Plug \:x = 0\: in \:p(X) \\

\implies p(0)= 0\\

\therefore 0= 0^3 +(a-1)(0)^2 +b(0)+c\\

\therefore 0= 0 +(a-1)\times 0 +b(0)+c\\

\therefore 0= 0 +0+0+c\\

\red{\bold{\therefore 0=c}}.....(1)\\\\

p(X)=x³+(a-1)x²+bx+c. \\

Plug \:x = -3\: in \:p(X) \\

[tex] \implies p(-3)= 0\\

\therefore 0= (-3)^3 +(a-1)(-3)^2 +b(-3)+c\\

\therefore 0= -27 +(a-1)\times 9 +b(-3)+c\\

\therefore 0= - 27 +9a-9 - 3b+c\\

\therefore 0= - 36+9a-3b+c\\

\therefore 36 =9a-3b+c... (2)\\

Plug \:c= 0\: in \:equation \: (2)\\

36= 9a - 3b + 0\\

36= 9a - 3b\\

36= 3(3a - b) \\

\purple {\bold{12 = 3a - b}} .... (3)\\\\

Plug \:x = 2\: in \:p(X) \\

\implies p(2)= 0\\

\therefore 0= 2^3 +(a-1)(2)^2 +b(2)+c\\

\therefore 0= 8 +(a-1)\times 4 +b(2)+c\\

\therefore 0= 8 +4a-4+2b+c\\

\therefore 0= 4 +4a+2b+c\\

\therefore - 4=4a+2b+c.....(4)\\

Plug \:c= 0\: in \:equation \: (4)\\

- 4 = 4a +2b+0\\

-4= 2(2a+b)\\

\orange{\bold{-2=2a + b}} .......(5)\\\\[/tex]

Adding equation (3) and (5), we find:

12 = 3a - b

-2 = 2a + b

_________

10 = 5a

10/5 = a

a = 2

Plug a = 2 in equation (5)

-2= 2(2) + b

-2 = 4 + b

-2 - 4 = b

-6 = b

b = - 6