Answer:
[tex]SE_p = 0.055[/tex]
Step-by-step explanation:
Given
[tex]n = 79[/tex] --- Heads
Proportion, p = 46 out of 79
Required
Determine the standard error for sample proportion (SEp)
This is calculated using the following formula
[tex]SE_p = \sqrt{\frac{p(1-p)}{n}}[/tex]
In this case:
[tex]p = \frac{46}{79}[/tex]
[tex]p = 0.5823[/tex]
Substitute values for p and n in:
[tex]SE_p = \sqrt{\frac{p(1-p)}{n}}[/tex]
[tex]SE_p = \sqrt{\frac{0.5823 * (1-0.5823)}{79}}[/tex]
[tex]SE_p = \sqrt{\frac{0.5823 * 0.4177}{79}}[/tex]
[tex]SE_p = \sqrt{\frac{0.24322671}{79}}[/tex]
[tex]SE_p = \sqrt{0.00307881911}[/tex]
[tex]SE_p = 0.0554871076[/tex]
[tex]SE_p = 0.055[/tex] ---- Approximated