blaize6
contestada

Determine whether KM and ST are parallel, perpendicular, or neither.
K (-3, -7), M(3, -3), S(0, 4), T(6, -5)

Respuesta :

Answer:

So, KM and ST are perpendicular  lines

Step-by-step explanation:

Find the slope of KM and ST.

K (-3, -7), M(3, -3)

Slope of KM = [tex]\frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]

                    [tex]= \frac{-3-[-7]}{3-[-3]}\\\\= \frac{-3+7}{3+3}\\\\ = \frac{4}{6}\\\\= \frac{2}{3}[/tex]

S(0 , 4)  & T(6 , -5)

Slope of ST = [tex]\frac{-5-4}{6-0}[/tex]

                   [tex]=\frac{-9}{6}\\\\=\frac{-3}{2}[/tex]

Slope of KM * slope of ST = [tex]\frac{2}{3} * \frac{-3}{2}[/tex]

                                           = -1

So, KM and ST are perpendicular  lines

Answer:

perpendicular

Step-by-step explanation: