Respuesta :

Answer:

Option A: (5,0)

Step-by-step explanation:

Given

[tex]y \leq \frac{2}{5}x-2[/tex]

Required

Select an ordered pair

Option A: (5,0)

This means

[tex]x = 5[/tex] [tex]y = 0[/tex]

Substitute these values in [tex]y \leq \frac{2}{5}x-2[/tex]

[tex]0 \leq \frac{2}{5} * 5 - 2[/tex]

[tex]0 \leq 2 - 2[/tex]

[tex]0 \leq 0[/tex]

This is a true statement.

Option B: (0,5)

This means

[tex]x = 0[/tex]   [tex]y = 5[/tex]

Substitute these values in [tex]y \leq \frac{2}{5}x-2[/tex]

[tex]5 \leq \frac{2}{5}* 0 -2[/tex]

[tex]5 \leq 0 -2[/tex]

[tex]5 \leq -2[/tex]

This is a false statement.

Option C: (-2,5)

This means

[tex]x=-2[/tex]   [tex]y = 5[/tex]

Substitute these values in [tex]y \leq \frac{2}{5}x-2[/tex]

[tex]5 \leq \frac{2}{5}* -2 -2[/tex]

[tex]5 \leq \frac{-4}{5} -2[/tex]

[tex]5 \leq \frac{-4-10}{5}[/tex]

[tex]5 \leq \frac{-14}{5}[/tex]

[tex]5 \leq -2.8[/tex]

This is a false statement.

Option D: (-5,2)

This means

[tex]x=-5[/tex]   [tex]y = 2[/tex]

Substitute these values in [tex]y \leq \frac{2}{5}x-2[/tex]

[tex]2 \leq \frac{2}{5}* -5 -2[/tex]

[tex]2 \leq -2 -2[/tex]

[tex]2 \leq -4[/tex]

This is a false statement.

Only option A represents a true statement,

Hence, option A is a solution to the inequality