write a function G whose graph represents the indicated transformation of the graph f
[tex]f(x) = \frac{2}{3} {x}^{2} + 2[/tex]
vertical stretch by a factor of 3

Respuesta :

Answer:

[tex]G(x) = 2x^2+6[/tex].

Step-by-step explanation:

The given function is

[tex]f(x) = \frac 2 3 x^2 +2[/tex]

On vertical stretch by a factor of 3, the new function G(x) is

G(x) = 3 f(x)

So, [tex]G(x) = 3 \times ( \frac 2 3 x^2 +2)= 2x^2+6[/tex]

Hence, the required function is [tex]G(x) = 2x^2+6[/tex].