write a polynomial function f of least degree that has rational coefficients, a leading coefficient of 1, and the given zeros. Write the function in standard form. -2,3,6

Respuesta :

Answer:

A polynomial function f of least degree  = f = x³ - 7x² + 36

The function in standard form = f = x³ - 7x² + 36

Step-by-step explanation:

As given, Leading coefficient of polynomial function = 1

Also given, zeroes of the function = -2, 3, 6

for root -2 : (x - (-2)) = (x + 2)

for root 3 : ( x - 3)

for root 6 : (x - 6)

Therefore, the polynomial function becomes -

f = 1(x+2)(x-3)(x-6)

⇒f = (x+2)(x² - 6x - 3x + 18)

⇒f = (x+2)(x² - 9x + 18)

⇒f = x³ - 9x² + 18x + 2x² - 18x + 36

⇒f = x³ - 7x² + 36

The polynomial function in standard form is [tex]f(x) = x^3 - 8x^2 +9x +18[/tex]

The zeros of the polynomial are given as:

[tex]Zeroes = -2,3,6[/tex]

Rewrite as:

[tex]x= -2,3,6[/tex]

Express the zeroes as an equation

[tex]x= -2[/tex],  [tex]x =3[/tex] and [tex]x =6[/tex]

Equate to 0

[tex]x + 2 = 0[/tex], [tex]x -3 = 0[/tex] and [tex]x -6 = 0[/tex]

Multiply the equations

[tex](x + 1) \times (x - 3) \times (x - 6) = 0 \times 0 \times 0[/tex]

[tex](x + 1) \times (x - 3) \times (x - 6) = 0[/tex]

Expand

[tex](x^2 - 3x + x - 3) \times (x - 6) = 0[/tex]

[tex](x^2 - 2x - 3) \times (x - 6) = 0[/tex]

Expand

[tex]x^3 - 2x^2 - 3x -6x^2 +12x +18 = 0[/tex]

Collect like terms

[tex]x^3 - 2x^2 -6x^2 - 3x +12x +18 = 0[/tex]

[tex]x^3 - 8x^2 +9x +18 = 0[/tex]

Express as a function

[tex]f(x) = x^3 - 8x^2 +9x +18[/tex]

Hence, the function in standard form is [tex]f(x) = x^3 - 8x^2 +9x +18[/tex]

Read more about functions at:

https://brainly.com/question/20510856