Answer:
Explanation:
From the information given;
Consider using Lande's Interval rule which can be expressed as:
[tex]\Delta E = E_{j+1} - E_jj \ = \alpha (j+1)[/tex]
here;
[tex]j+1[/tex] = highest level of j
and
[tex]\dfrac{\Delta E_1}{\Delta E_2} = \dfrac{(j+2)}{(j+1)}[/tex]
[tex]\dfrac{5}{3} = \dfrac{(j+2)}{(j+1)}[/tex]
[tex]5(j+1) = 3(j+2)[/tex]
[tex]5j+5 = 3j+6[/tex]
[tex]2j = 1\\ \\ j = \dfrac{1}{2}[/tex]
recall that:
[tex]j = |S-L| \ \to \ |S+L |[/tex]
So;
[tex]S-L = \dfrac{1}{2} --- (1)[/tex]; &
[tex]S+L = \dfrac{5}{2} --- (1)[/tex]
Using the elimination method, we have:
[tex]2S = \dfrac{6}{2}[/tex]
[tex]S = \dfrac{3}{2}[/tex]
Since [tex]S = \dfrac{3}{2}[/tex]; then from (1)
[tex]\dfrac{3}{2} -L = \dfrac{1}{2}[/tex]
[tex]L = \dfrac{2}{2}[/tex]
[tex]L = 1[/tex]