Respuesta :
Answer:
a) For radial heat transfer to be zero along the perfectly insulated adiabatic surface; [tex]\frac{dT_{y} }{dr}[/tex][tex]|_{r-0}[/tex] = 0
b) For constant temperature; [tex]T_{y}[/tex]([tex]r_{i}[/tex]) = [tex]T_{C}[/tex]([tex]r_{i}[/tex])
c) The heat transfer in the conducting rod and the cladding material is the same, i.e; [tex]k_{r}[/tex][tex]\frac{dT_{y} }{dr}[/tex] [tex]|_{ri}[/tex] = [tex]k_{c}[/tex][tex]\frac{dT_{c} }{dr}[/tex] [tex]|_{ri}[/tex]
d) The convection surface conduction by cooling fluid will be;
[tex]k_{c}[/tex][tex]\frac{dT_{c} }{dr}[/tex] [tex]|_{r0}[/tex] = h( [tex]T_{c}[/tex]( [tex]r_{0}[/tex] ) - [tex]T_{\infty}[/tex] )
Explanation:
Given the data in question;
we write the general form of the heat conduction equation equation in cylindrical coordinates with internal heat generation.
1/r[tex]\frac{d}{dr}[/tex]( kr[tex]\frac{dT}{dr}[/tex] ) + 1/r² [tex]\frac{d}{d\beta }[/tex]( ( k[tex]\frac{dT}{dr}[/tex] ) + [tex]\frac{d}{dz}[/tex]( k[tex]\frac{dT}{dr}[/tex]) + q = 0
where radius of cylinder is r, thermal conductivity of the cylinder is k, and q is heat generated in cylinder.
Now, Assume one dimensional heat conduction
lets substitute the condition for conducting rod with steady state condition.
[tex]k_{y}[/tex]/r [tex]\frac{d}{dr}[/tex]( r[tex]\frac{dT_{y} }{dr}[/tex] ) + q = 0
Apply the conditions for cladding by substituting 0 for q
[tex]\frac{d}{dr}[/tex]( r[tex]\frac{dT_{r} }{dr}[/tex] ) = 0
Apply the following boundary conditions;
a) For radial heat transfer to be zero along the perfectly insulated adiabatic surface;
[tex]\frac{dT_{y} }{dr}[/tex][tex]|_{r-0}[/tex] = 0
b) For constant temperature
[tex]T_{y}[/tex]([tex]r_{i}[/tex]) = [tex]T_{C}[/tex]([tex]r_{i}[/tex])
c) The heat transfer in the conducting rod and the cladding material is the same, i.e
[tex]k_{r}[/tex][tex]\frac{dT_{y} }{dr}[/tex] [tex]|_{ri}[/tex] = [tex]k_{c}[/tex][tex]\frac{dT_{c} }{dr}[/tex] [tex]|_{ri}[/tex]
d) The convection surface conduction by cooling fluid will be;
[tex]k_{c}[/tex][tex]\frac{dT_{c} }{dr}[/tex] [tex]|_{r0}[/tex] = h( [tex]T_{c}[/tex]( [tex]r_{0}[/tex] ) - [tex]T_{\infty}[/tex] )