Respuesta :
Answer:
the correct one is: a diffraction limits the resolving power to approximately the size of the wavelength of the light used
Explanation:
To be able to solve two structures with a light source, the Rayleigh criterion must be met that stable the two structures are solved when the first minimum of diffraction at one point is in the code of the first maximum of the other point
Using this criterion we can find an expression for the first minimization of the diffraction spectrum m = 1
sin θ tea = λ / a
now the structure of the comatose has a separation of around 1 nm and the wavelength of visible light ranges from 400 to 700 nm, when substituting we find
sin θ = 400/1 10
sin θ = 400
sin θ = 700/1
sin θ = 700
These values are neither impossible since the sin function is bounded between -1 to 1, so we cannot see the diffraction
When reviewing the different statements, the correct one is: a diffraction limits the resolving power to approximately the size of the wavelength of the light used:
It would be impossible to build a microscope that could use visible light to
see the molecular structure of a crystal because diffraction limits the
resolving power to about the size of the wavelength of the light used.
Diffraction occurs when waves encounter an obstacle which leads to it
bending around it. Visible light when diffracted results in the overlapping of
the patterns thereby formation of images as one instead of in different parts.
This thereby leads to the resolving power being limited to the size of the
wavelength of light used and images won't be able to be identified
separately.
Read more about diffraction here https://brainly.com/question/16749356