The area in square feet of a rectangular garden can be expressed as the product of the garden’s length and width, or A(x) = 3x2 +13x +14. If the width of the garden is (x + 2) feet, what is the length of the garden?

Respuesta :

Answer:

3x+7

Step-by-step explanation:

Use long division or synthetic division. (3x^2+13x+14)/(x+2)

The length of the rectangular garden is 3x + 7

The given expression:

[tex]A = 3x^2 + 13x + 14[/tex]

the width of the garden = x + 2

let the length of the garden = y

To find:

  • the length of the garden

The area of the rectangular garden is calculated as;

[tex]A = y(x + 2) = 3x^2 + 13x + 14\\\\y(x + 2) = 3x^2 + 13x + 14\\\\y = \frac{3x^2 + 13x + 14}{x + 2}[/tex]

Using long division method:

                         3x + 7

                    ------------------------------

        x + 2 √ 3x² + 13x + 14

                  - (3x² + 6x)

                   -------------------------

                              7x + 14

                            - (7x + 14)

                  -------------------------------

                                0

Thus, the length of the rectangular garden, y = 3x + 7

Learn more here: https://brainly.com/question/12932084