Respuesta :

Answer:

We conclude that [tex]\sqrt{5}, \sqrt{5},\sqrt{10}[/tex] is an isosceles right triangle.

Step-by-step explanation:

Given the sides of a triangle

[tex]\sqrt{5}, \sqrt{5},\sqrt{10}[/tex]

Given that the two sides are equal. Thus, it must be an isosceles triangle.

Let us check whether it is an isosceles right triangle or not.

We know that for a right-angled triangle with sides a, b and the hypotenuse c is defined as:

[tex]c=\sqrt{a^2+b^2}[/tex]

Given

[tex]a=\sqrt{5}[/tex]

[tex]b=\sqrt{5}[/tex]

now substituting [tex]a=\sqrt{5}[/tex] and [tex]b=\sqrt{5}[/tex] in the equation

[tex]c=\sqrt{a^2+b^2}[/tex]

[tex]c=\sqrt{\left(\sqrt{5}\right)^2+\left(\sqrt{5}\right)^2}[/tex]

[tex]c=\sqrt{10}[/tex]

Thus,

[tex]a=\sqrt{5}[/tex]

[tex]b=\sqrt{5}[/tex]

[tex]c=\sqrt{10}[/tex]

Which satisfies the given side lengths [tex]\sqrt{5}, \sqrt{5},\sqrt{10}[/tex]

Therefore, we conclude that [tex]\sqrt{5}, \sqrt{5},\sqrt{10}[/tex] is an isosceles right triangle.