Answer:
We conclude that:
[tex]\left(x-8\right)^2+16=x^2-16x+80[/tex]
Step-by-step explanation:
Given the equation
[tex]\left(x-8\right)^2\:+\:16[/tex]
First, solve (x - 8)²
Apply Perfect Square formula: (a - b)² = a² - 2ab + b²
[tex]a=x,\:\:b=8[/tex]
[tex]\left(x-8\right)^2=x^2-2x\cdot \:\:8+8^2[/tex]
[tex]=x^2-16x+64[/tex]
so the expression becomes
[tex]\left(x-8\right)^2+16=x^2-16x+64+16[/tex]
[tex]=x^2-16x+80[/tex] Add the numbers: 64+16=80
Therefore, we conclude that:
[tex]\left(x-8\right)^2+16=x^2-16x+80[/tex]