Respuesta :
Answer:
option C
[tex](3,4)[/tex]
Step-by-step explanation:
we have
[tex]2a-3c=-6[/tex] -----> equation A
[tex]a+2c=11[/tex] -----> equation B
Multiply the equation B by [tex]-2[/tex]
[tex]-2(a+2c)=-2*11[/tex]
[tex]-2a-4c=-22[/tex] ------> equation C
Adds equation A and equation C
[tex]2a-3c=-6\\-2a-4c=-22\\----------\\-3c-4c=-6-22\\-7c=-28\\c=4[/tex]
Find the value of a
substitute the value of c in equation A
[tex]2a-3(4)=-6[/tex]
[tex]2a=6[/tex]
[tex]a=3[/tex]
The solution is the point [tex](3,4)[/tex]
Answer:
option c is correct.
3, 4
Step-by-step explanation:
Given the system of equations:
[tex]2a-3c = -6[/tex] .....[1]
[tex]a+2c = 11[/tex] .....[2]
Multiply equation [2] by 2 both sides we have;
[tex]2a + 4c= 22[/tex] ......[3]
Subtract equation [2] from [3] we have;
[tex]2a+4c - 2a+3c = 22 - (-6)[/tex]
⇒[tex]4c+3c = 28[/tex]
Combine like terms;
[tex]7c = 28[/tex]
Divide both sides by 7 we have;
c = 4
Substitute this in [1] we have;
2a- 3(4) = -6
2a -12 = -6
Add 12 to both sides we have;
2a = 6
Divide both sides by 3 we have;
a = 3
Therefore, the solution to this system of linear equations is, (3, 4)