Answer:
[tex]P(t) = 1161(9)^{t}[/tex]
Step-by-step explanation:
Given
[tex]P(t) = 43(3)^{2t+3}[/tex]
Required
Write in form of [tex]P(t) =ab^t[/tex]
[tex]P(t) = 43(3)^{2t+3}[/tex]
Apply law of indices:
[tex]P(t) = 43(3)^{2t}*3^3}[/tex]
Reorder
[tex]P(t) = 43*3^3*(3)^{2t}[/tex]
Express [tex]3^3[/tex] at 27
[tex]P(t) = 43*27*(3)^{2t}[/tex]
[tex]P(t) = 1161*(3)^{2t}[/tex]
Rewrite as:
[tex]P(t) = 1161*(3^2)^{t}[/tex]
Express [tex]3^2[/tex] as 9
[tex]P(t) = 1161*(9)^{t}[/tex]
[tex]P(t) = 1161(9)^{t}[/tex]