Respuesta :
5x^2+3x-4=0
x^2+3x/5-4/5=0
x^2+3x/5=4/5
x^2+3x/5+9/100=89/100
(x+3/10)^2=89/100
x+3/10=±(√89)/10
x=-3/10±√89/100
x=-3±(√89/10)
x^2+3x/5-4/5=0
x^2+3x/5=4/5
x^2+3x/5+9/100=89/100
(x+3/10)^2=89/100
x+3/10=±(√89)/10
x=-3/10±√89/100
x=-3±(√89/10)
Answer:
The equation [tex]x=\frac{-3\pm \sqrt{(3)^2-4(5)(-4)}}{2(5)}[/tex] shows the quadratic formula used correctly to solve the given quadratic equation.
Step-by-step explanation:
The given equation is
[tex]5x^2+3x-4=0[/tex] .... (1)
If a quadratic equation is defined as
[tex]ax^2+bx+c=0[/tex] ..... (2)
then the quadratic formula is
[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
From equation (1) and (2), we get
[tex]a=5,b=3,c=-4[/tex]
Using quadratic formula we get
[tex]x=\frac{-3\pm \sqrt{(3)^2-4(5)(-4)}}{2(5)}[/tex]
Therefore the equation [tex]x=\frac{-3\pm \sqrt{(3)^2-4(5)(-4)}}{2(5)}[/tex] shows the quadratic formula used correctly to solve the given quadratic equation.