Respuesta :

5x^2+3x-4=0 
x^2+3x/5-4/5=0 
x^2+3x/5=4/5 
x^2+3x/5+9/100=89/100 
(x+3/10)^2=89/100 
x+3/10=±(√89)/10 
x=-3/10±√89/100 
x=-3±(√89/10)

Answer:

The equation [tex]x=\frac{-3\pm \sqrt{(3)^2-4(5)(-4)}}{2(5)}[/tex] shows the quadratic formula used correctly to solve the given quadratic equation.

Step-by-step explanation:

The given equation is

[tex]5x^2+3x-4=0[/tex]            .... (1)

If a quadratic equation is defined as

[tex]ax^2+bx+c=0[/tex]           ..... (2)

then the quadratic formula is

[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

From equation (1) and (2), we get

[tex]a=5,b=3,c=-4[/tex]

Using quadratic formula we get

[tex]x=\frac{-3\pm \sqrt{(3)^2-4(5)(-4)}}{2(5)}[/tex]

Therefore the equation [tex]x=\frac{-3\pm \sqrt{(3)^2-4(5)(-4)}}{2(5)}[/tex] shows the quadratic formula used correctly to solve the given quadratic equation.