In a right triangle, one leg measures 4 inches and the other leg measures 6 inches. What is the length of the hypotenuse in inches?
A. 2√ 13
B. √ 52
C. 10
D. 52

Respuesta :

a^2 + b^2 = c^2
4^2 + 6^2 = c^2
16 + 36 = c^2
52 = c^2
sqrt 52 = c
sqrt (4 * 13) = c
2 sqrt 13 = c.....I believe ur answer is A because sqrt of 52 breaks down to 2 sqrt 13

Answer:

[tex] length\ of\ the\ hypotenuse\ in\ inches\ is\ 2 \sqrt{13} .[/tex]

Step-by-step explanation:

By using the pythagoream theorem

Hypotenuse² = Perpendicular² + Base²

As given

In a right triangle, one leg measures 4 inches and the other leg measures 6 inches.

Thus

Hypotenuse² = 4² + 6²

Hypotenuse² = 16 + 36

Hypotenuse² = 52

[tex]Hypotenuse = \sqrt{52}[/tex]

[tex]Hypotenuse = 2 \sqrt{13}\ inches[/tex]

[tex]The\ length\ of\ the\ hypotenuse\ in\ inches\ is\ 2 \sqrt{13} .[/tex]