Respuesta :

Answer:

The proof is done in the step-by-step explanation below.

Step-by-step explanation:

We are given the following identity:

[tex]\frac{\sin{A}\tan{A}}{1-\cos{A}}[/tex]

And we have to show that this is equals to:

[tex]1 + \sec{A}[/tex]

Multiplying numerator and denominator by the conjugate of the denominator:

[tex]\frac{\sin{A}\tan{A}}{1-\cos{A}} \times \frac{1+\cos{A}}{1+\cos{A}}[/tex]

[tex]\frac{\sin{A}\tan{A}(1+\cos{A})}{1 - \cos^2{A}}[/tex]

We use these following identities:

[tex]\sin^2{A} + \cos^2{A} = 1[/tex]

So

[tex]1 - \cos^2{A} = \sin^2{A}[/tex]

Also:

[tex]\tan{A} = \frac{\sin{A}}{\cos{A}}[/tex]

Then

[tex]\frac{\sin{A}\sin{A}(1+\cos{A})}{\cos{A}\sin^2{A}}[/tex]

[tex]\frac{\sin^2{A}(1+\cos{A})}{\cos{A}\sin^2{A}}[/tex]

[tex]\frac{1 + \cos{A}}{\cos{A}}[/tex]

[tex]\frac{1}{\cos{A}} + \frac{\cos{A}}{\cos{A}}[/tex]

[tex]\frac{1}{\cos{A}} + 1[/tex]

Since:

[tex]\sec{A} = \frac{1}{\cos{A}}[/tex]

We have that:

[tex]1 + \sec{A}[/tex]

Thus, the proof is done.