Using disks or washers, find the volume of the solid obtained by rotating the region bounded by the curves y=x2, 0≤x≤3, y=9, and x=0 about the y-axis.

Volume =

Respuesta :

Answer:

113.08 cm^3

Volume for sphere = 4/3 Pi 3^3

y = x^2 - (x+0) (x+0)< 3 would equal x = 1.25 and y = 2.5 max

then y = 9 and x = 0 around the y axis

We find (1.25, 2.5) (0,9)

y + 1 = 0 + 1.25 + 9

y+ 1 = 10.25

radius therefore = 3^2 = 3

and surface area = pi x 9 =  28.2743338823

= 28.27cm^2 x 4 = 113.1cm

If it is a sphere you then multiple 4/3 pi r^3 is exactly the same as 4pir^2

Step-by-step explanation:

The volume of the solid is [tex]9\pi[/tex] cubic unit.

Volume of solid :

The volume of the solid obtained by rotating the curve [tex]y=f(x)[/tex] is given as,

                        [tex]V=\int\limits^b_a \pi {y^{2} } \, dx[/tex]

Given that, [tex]y=x^{2} ,a=0,b=3[/tex]

Substitute above values in volume formula.

         [tex]V=\int\limits^3_0 \pi{x^{2} } \, dx \\\\V=\pi(\frac{x^{3} }{3} )^{3} _{0}\\\\V=\frac{\pi}{3} (27-0)=9\pi[/tex]

Thus, the volume of the solid is [tex]9\pi[/tex] cubic unit.

Learn more about the volume here:

https://brainly.com/question/1972490