Answer:
[tex]y=[/tex] [tex]-\frac{5}{6}x - 1[/tex] is the answer
Step-by-step explanation:
Equation of the line: y = 6/5x + 1
= 5y = 6x + 5
= 6x - 5y + 5
Equation of the perpendicular line: bx - ay + k = 0
= -5x -6y + k = 0
Equation passes through (6,-6),
-5(6) -6(-6) + k = 0
-30 + 36 + k = 0
6 + k = 0
k = -6
Substituting,
-5x -6y + k = 0
-5x -6y -6 = 0
-6y = 5x + 6
[tex]y=[/tex] [tex]-\frac{5}{6}x - 1[/tex] (Slope-Intercept form)