Respuesta :

Answer:

[tex]y=[/tex] [tex]-\frac{5}{6}x - 1[/tex] is the answer

Step-by-step explanation:

Equation of the line: y = 6/5x + 1

                        = 5y = 6x + 5

                        = 6x - 5y + 5

Equation of the perpendicular line: bx - ay + k = 0

                                                       = -5x -6y + k = 0

Equation passes through (6,-6),

-5(6) -6(-6) + k = 0

-30 + 36 + k = 0

6 + k = 0

k = -6

Substituting,

-5x -6y + k = 0

-5x -6y -6 = 0

-6y = 5x + 6

[tex]y=[/tex] [tex]-\frac{5}{6}x - 1[/tex] (Slope-Intercept form)