Respuesta :
Answer:
A = 8.75 cm²
Step-by-step explanation:
Given that,
Radius, r = 5 cm
The arc length, l = 3.5 cm
We need to find the area of a sector. Let [tex]\theta[/tex] be the angle. So,
[tex]\theta=\dfrac{l}{r}\\\\\theta=\dfrac{3.5}{5}\\\\\theta=0.7\ rad[/tex]
The formula for the area of sector when [tex]\theta[/tex] is in radian is given by :
[tex]A=\dfrac{1}{2}\times \theta r^2\\\\A=\dfrac{1}{2}\times 0.7\times 5^2\\\\A=8.75\ cm^2[/tex]
So, the area of the sector is 8.75 cm².
Answer: (b)
Step-by-step explanation:
Given
the radius of circle r=5 cm
arc length [tex]l=3.5\ cm[/tex]
Arc length is also given by
[tex]l=\dfrac{\theta }{360^{\circ}}\times 2\pi r[/tex]
[tex]\Rightarrow 3.5=\dfrac{\theta }{360^{\circ}}\times 2\pi \times 5\\\\\Rightarrow \theta =40.10^{\circ}[/tex]
Area of the sector is given by
[tex]\Rightarrow A=\dfrac{\theta }{360^{\circ}}\times \pi r^2\\\\\Rightarrow A=\dfrac{40.101^{\circ}}{360^{\circ}}\times 3.142\times 5^2\\\\\Rightarrow A=8.749\approx 8.75\ cm^2[/tex]