Answer:
[tex]A" =(-1,-1)[/tex] [tex]B" =(-2,1)[/tex]
[tex]C" =(-4,1)[/tex] [tex]D" =(-5,-1)[/tex]
Step-by-step explanation:
Given
[tex]A = (1,1)[/tex] [tex]B =(2,3)[/tex]
[tex]C = (4,3)[/tex] [tex]D = (5,1)[/tex]
Required
The new coordinates after reflected across y-axis and shifted 2 units down
When a point is reflected across the y-axis, the rule is:
[tex](x,y)=>(-x,y)[/tex]
So:
[tex]A = (1,1)[/tex] [tex]=> A' = (-1,1)[/tex]
[tex]B =(2,3)[/tex] [tex]=> B' = (-2,3)[/tex]
[tex]C = (4,3)[/tex] [tex]=> C' = (-4,3)[/tex]
[tex]D = (5,1)[/tex] [tex]=> D' = (-5,1)[/tex]
When a point is translated 2 units down, the rule is:
[tex](x,y) => (x,y-2)[/tex]
So:
[tex]A = (1,1)[/tex] [tex]=> A' = (-1,1)[/tex] [tex]=> A" =(-1,-1)[/tex]
[tex]B =(2,3)[/tex] [tex]=> B' = (-2,3)[/tex] [tex]=> B" =(-2,1)[/tex]
[tex]C = (4,3)[/tex] [tex]=> C' = (-4,3)[/tex][tex]=> C" =(-4,1)[/tex]
[tex]D = (5,1)[/tex] [tex]=> D' = (-5,1)[/tex] [tex]=> D" =(-5,-1)[/tex]
So, the new coordinates are:
[tex]A" =(-1,-1)[/tex] [tex]B" =(-2,1)[/tex]
[tex]C" =(-4,1)[/tex] [tex]D" =(-5,-1)[/tex]