A disk 7.90 cm in radius rotates at a constant rate of 1 190 rev/min about its central axis. (a) Determine its angular speed. 124.58 Correct: Your answer is correct. rad/s (b) Determine the tangential speed at a point 2.98 cm from its center. 3.71 Correct: Your answer is correct. m/s (c) Determine the radial acceleration of a point on the rim. magnitude 1.23 Correct: Your answer is correct. km/s2 direction toward the center Correct: Your answer is correct. (d) Determine the total distance a point on the rim moves in 2.06 s. 20.28 Correct: Your answer is correct. m

Respuesta :

Answer:

[tex]124.62\ \text{rad/s}[/tex]

[tex]3.71\ \text{m/s}[/tex]

[tex]1.23\ \text{km/s}^2[/tex]

[tex]20.28\ \text{m}[/tex]

Explanation:

r = Radius of disk = 7.9 cm

N = Number of revolution per minute = 1190 rev/minute

Angular speed is given by

[tex]\omega=N\dfrac{2\pi}{60}\\\Rightarrow \omega=1190\times \dfrac{2\pi}{60}\\\Rightarrow \omega=124.62\ \text{rad/s}[/tex]

The angular speed is [tex]124.62\ \text{rad/s}[/tex]

r = 2.98 cm

Tangential speed is given by

[tex]v=r\omega\\\Rightarrow v=2.98\times 10^{-2}\times 124.62\\\Rightarrow v=3.71\ \text{m/s}[/tex]

Tangential speed at the required point is [tex]3.71\ \text{m/s}[/tex]

Radial acceleration is given by

[tex]a=\omega^2r\\\Rightarrow a=124.62^2\times 7.9\times 10^{-2}\\\Rightarrow a=1226.88\approx 1.23\ \text{km/s}^2[/tex]

The radial acceleration is [tex]1.23\ \text{km/s}^2[/tex].

t = Time = 2.06 s

Distance traveled is given by

[tex]d=vt\\\Rightarrow d=\omega rt\\\Rightarrow d=124.62\times 7.9\times 10^{-2}\times 2.06\\\Rightarrow d=20.28\ \text{m}[/tex]

The total distance a point on the rim moves in the required time is [tex]20.28\ \text{m}[/tex].