Respuesta :
Answer:
Explanation:
From the information given;
mass of the crate m = 41 kg
constant horizontal force = 135 N
where;
[tex]s_1 = 15.0 \ m \\ \\ s_2 = 12.0 \ m[/tex]
coefficient of kinetic friction [tex]u_k[/tex] = 0.28
a)
To start with the work done by the applied force [tex](W_f)[/tex]
[tex]W_F = F\times (s_1 +s_2) \times cos(0) \ J[/tex]
[tex]W_F = 135 \times (12 +15) \times cos(0) \ J \\ \\ W_F = (135 \times 37 )J \\ \\ W_F =4995 \ J[/tex]
Work done by friction:
[tex]W_{ff} = -\mu\_k\times m \times g \times s_2 \\ \\ W_{ff} = -0.320 \times 41 \times 9.81 \times 12 \ J \\ \\ W_{ff} = -1544.49 \ J[/tex]
Work done by gravity:
[tex]W_g = mg \times (s_1+s_2) \times cos (90)} \ J \\ \\ W_g = 0 \ j[/tex]
Work done by normal force;
[tex]W_n = N \times (s_1 + s_2) \times cos (90) \ J[/tex]
[tex]W_n = 0 \ J[/tex]
b)
total work by all forces:
[tex]W = F \times (s_1 + s_2) + \mu_k \times m \times g \times s_2 \times 180 \\ \\ W = 135 \times (15+12) \ J - 0.320 \times 41 \times 9.81 \times 12[/tex]
W = 2100.5 J
c) By applying the work-energy theorem;
total work done = ΔK.E
[tex]W = \dfrac{1}{2}\times m \times (v^2 - u^2)[/tex]
[tex]2100.5 = 0.5 \times 41 \times v^2[/tex]
[tex]v^2 = \dfrac{2100.5}{ 0.5 \times 41 }[/tex]
[tex]v^2 = 102.46 \\ \\ v = \sqrt{102.46} \\ \\ \mathbf{v = 10.1 \ m/s}[/tex]