Answer:
Explanation:
[tex]\lambda[/tex] = Observed wavelength = 550 nm
[tex]\lambda'[/tex] = Actual wavelength = 635 nm
c = Speed of light = [tex]3\times 10^8\ \text{m/s}[/tex]
v = Velocity of the physicist
Doppler shift is given by
[tex]f=\sqrt{\dfrac{c+v}{c-v}}f'\\\Rightarrow \dfrac{c}{\lambda}=\sqrt{\dfrac{c+v}{c-v}}\dfrac{c}{\lambda'}\\\Rightarrow \dfrac{\lambda'^2}{\lambda^2}=\dfrac{c+v}{c-v}\\\Rightarrow \dfrac{\lambda'^2}{\lambda^2}=\dfrac{1+\dfrac{v}{c}}{1-\dfrac{v}{c}}\\\Rightarrow \dfrac{\lambda'^2}{\lambda^2}(1-\dfrac{v}{c})=1+\dfrac{v}{c}\\\Rightarrow \dfrac{\lambda'^2}{\lambda^2}(1-\dfrac{v}{c})=1+\dfrac{v}{c}\\\Rightarrow \dfrac{\lambda'^2}{\lambda^2}-1=\dfrac{v}{c}(1+\dfrac{\lambda'^2}{\lambda^2})\\\Rightarrow v=\dfrac{c(\dfrac{\lambda'^2}{\lambda^2}-1)}{1+\dfrac{\lambda'^2}{\lambda^2}}[/tex]
[tex]\Rightarrow v=\dfrac{3\times 10^8\times (\dfrac{635^2}{550^2}-1)}{1+\dfrac{635^2}{550^2}}\\\Rightarrow v=42817669.77\ \text{m/s}[/tex]
The physicist was traveling at a velocity of [tex]42817669.77\ \text{m/s}[/tex].