Respuesta :

Answer:

{-8, -4}

Step-by-step explanation:

Rewrite this function y=x2 +12x +32 as y = x^2 + 12x + 32; " ^ " indicates exponentiation.

Set this x^2 + 12x + 32 equal to zero (to find the zeros):  

x^2 + 12x + 32 = 0.  Let's solve this using the quadratic formula, which applies when ax^2 + bx + c = 0:

       -b ± √(b^2 - 4·a·c)

x = -------------------------------

                    2a

The coefficients of the given quadratic are {1, 12, 32}.  Thus, the discriminant is

b^2 - 4ac, or 12^2 - 4(1)(32), or 144 - 128, or 16. Therefore, we have:

       -12 ± √16                                                     -12 ± 4

x = --------------------    which simplifies to:    x = --------------- = { -8, -4}

              2                                                                  2

The zeros are {-8, -4}

Otras preguntas