Answer:
Area of triangle ABC = 6 square units
Step-by-step explanation:
By applying Pythagoras theorem in right triangle ADC,
AC² = AD² + CD²
3² = (1.8)² + CD²
9 - 3.24 = CD²
CD = √5.76
CD = 2.4 units
By applying mean ratio theorem,
[tex]\frac{AD}{CD}=\frac{CD}{DB}[/tex]
CD² = AD × DB
(2.4)² = 1.8 × DB
DB = [tex]\frac{5.76}{1.8}[/tex]
DB = 3.2 units
AB = AD + DB
AB = 1.8 + 3.2
AB = 5 units
Since, area of a triangle ABC = [tex]\frac{1}{2}(\text{Base})(\text{Height})[/tex]
= [tex]\frac{1}{2}(\text{AB})(\text{CD})[/tex]
= [tex]\frac{1}{2}(5)(2.4)[/tex]
= 6 square units