Respuesta :

Answer:

Area of triangle ABC = 6 square units

Step-by-step explanation:

By applying Pythagoras theorem in right triangle ADC,

AC² = AD² + CD²

3² = (1.8)² + CD²

9 - 3.24 = CD²

CD = √5.76

CD = 2.4 units

By applying mean ratio theorem,

[tex]\frac{AD}{CD}=\frac{CD}{DB}[/tex]

CD² = AD × DB

(2.4)² = 1.8 × DB

DB = [tex]\frac{5.76}{1.8}[/tex]

DB = 3.2 units

AB = AD + DB

AB = 1.8 + 3.2

AB = 5 units

Since, area of a triangle ABC = [tex]\frac{1}{2}(\text{Base})(\text{Height})[/tex]

                                                = [tex]\frac{1}{2}(\text{AB})(\text{CD})[/tex]

                                                = [tex]\frac{1}{2}(5)(2.4)[/tex]

                                                = 6 square units