Answer:
[tex]Area = 30[/tex]
Step-by-step explanation:
Given
Rectangle coordinates
[tex]A = (0,4)[/tex]
[tex]B = (4,2)[/tex]
[tex]C = (1,-4)[/tex]
[tex]D =(-3,-2)[/tex]
Required
The area of the rectangle
The area is calculated as:
[tex]Area = Length* Width[/tex]
The length of the rectangle will be represented as:
[tex]Length = AB = CD[/tex]
And the width is:
[tex]Width = BC = AD[/tex]
Calculate distance AB using:
[tex]AB = \sqrt{(x_1 - x_2)^2 +(y_1 - y_2)^2 }[/tex]
Where:
[tex]A = (0,4)[/tex] --- [tex](x_1,y_1)[/tex]
[tex]B = (4,2)[/tex] [tex]--- (x_2,y_2)[/tex]
[tex]AB = \sqrt{(0 - 4)^2 +(4 - 2)^2 }[/tex]
[tex]AB = \sqrt{(- 4)^2 +(2)^2 }[/tex]
[tex]AB = \sqrt{16 +4 }[/tex]
[tex]AB = \sqrt{20}[/tex]
Calculate distance BC using:
[tex]BC = \sqrt{(x_1 - x_2)^2 +(y_1 - y_2)^2 }[/tex]
[tex]C = (1,-4)[/tex] [tex]---(x_1,y_1)[/tex]
[tex]B = (4,2)[/tex] [tex]--- (x_2,y_2)[/tex]
[tex]BC = \sqrt{(1 - 4)^2 +(-4 - 2)^2 }[/tex]
[tex]BC = \sqrt{(- 3)^2 +(-6)^2 }[/tex]
[tex]BC = \sqrt{9 +36}[/tex]
[tex]BC = \sqrt{45}[/tex]
So, the area is:
[tex]Area = Length * Width[/tex]
[tex]Area = AB * BC[/tex]
[tex]Area = \sqrt{20} * \sqrt{45}[/tex]
[tex]Area = \sqrt{20 * 45}[/tex]
[tex]Area = \sqrt{900[/tex]
[tex]Area = 30[/tex]