John was visiting four cities that form a rectangle on a coordinate grid at A(0, 4), B(4, 2), C(1, -4) and D(-3, -2). What is the area of the space that cities enclose? Round your answer to the nearest whole number. Do not include units in your answer.

Respuesta :

Answer:

[tex]Area = 30[/tex]

Step-by-step explanation:

Given

Rectangle coordinates

[tex]A = (0,4)[/tex]

[tex]B = (4,2)[/tex]

[tex]C = (1,-4)[/tex]

[tex]D =(-3,-2)[/tex]

Required

The area of the rectangle

The area is calculated as:

[tex]Area = Length* Width[/tex]

The length of the rectangle will be represented as:

[tex]Length = AB = CD[/tex]

And the width is:

[tex]Width = BC = AD[/tex]

Calculate distance AB using:

[tex]AB = \sqrt{(x_1 - x_2)^2 +(y_1 - y_2)^2 }[/tex]

Where:

[tex]A = (0,4)[/tex] --- [tex](x_1,y_1)[/tex]

[tex]B = (4,2)[/tex] [tex]--- (x_2,y_2)[/tex]

[tex]AB = \sqrt{(0 - 4)^2 +(4 - 2)^2 }[/tex]

[tex]AB = \sqrt{(- 4)^2 +(2)^2 }[/tex]

[tex]AB = \sqrt{16 +4 }[/tex]

[tex]AB = \sqrt{20}[/tex]

Calculate distance BC using:

[tex]BC = \sqrt{(x_1 - x_2)^2 +(y_1 - y_2)^2 }[/tex]

[tex]C = (1,-4)[/tex] [tex]---(x_1,y_1)[/tex]

[tex]B = (4,2)[/tex] [tex]--- (x_2,y_2)[/tex]

[tex]BC = \sqrt{(1 - 4)^2 +(-4 - 2)^2 }[/tex]

[tex]BC = \sqrt{(- 3)^2 +(-6)^2 }[/tex]

[tex]BC = \sqrt{9 +36}[/tex]

[tex]BC = \sqrt{45}[/tex]

So, the area is:

[tex]Area = Length * Width[/tex]

[tex]Area = AB * BC[/tex]

[tex]Area = \sqrt{20} * \sqrt{45}[/tex]

[tex]Area = \sqrt{20 * 45}[/tex]

[tex]Area = \sqrt{900[/tex]

[tex]Area = 30[/tex]