Respuesta :

Answer:

[tex]d = 16.55[/tex]

Step-by-step explanation:

Given

[tex]z_1 = -8 + 3i[/tex]

[tex]z_2 = 7 - 4i[/tex]

Required

The distance between them

First, calculate the difference (d) between z1 and z2

[tex]d = z_1 - z_2[/tex]

[tex]d = -8 + 3i - [7 - 4i][/tex]

Open bracket

[tex]d = -8 + 3i - 7 + 4i[/tex]

Collect like terms

[tex]d = -8 - 7+ 3i + 4i[/tex]

[tex]d = -15+ 7i[/tex]

Using modulus, we have:

[tex]d = \sqrt{R^2 + I^2}[/tex]

Where

R = Real Part = -15

I = Imaginary Part = 7

So, we have:

[tex]d = \sqrt{(-15)^2 + 7^2}[/tex]

[tex]d = \sqrt{225 + 49}[/tex]

[tex]d = \sqrt{274}[/tex]

[tex]d = 16.55[/tex]